KASC Core Academic Standards Checklist
Elementary Mathmatics

User's Name:
Date:

Purpose:
Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.

Kindergarten				
K.CC.1	Count to 100 by ones and by tens			
K.CC.2	Count forward beginning from a given number within the known sequence (instead of having to begin at 1).			
K.CC.3	Write numbers from 0 to 20. Represent a number of objects with a written numeral 0-20 (with 0 representing a count of no objects).			
K.CC.4	Understand the relationship between numbers and quantities; connect counting to cardinality.			
	a. When counting objects, say the number names in the standard order, pairing each object with one and only one number name and each number name with one and only one object.			
	b. Understand that the last number name said tells the number of objects counted. The number of objects is the same regardless of their arrangement or the order in which they were counted.			
	c. Understand that each successive number name refers to a quantity that is one larger.			
	Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 1-20, count out that many objects.			
K.CC.5				

K.MD.1	Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.			
K.MD.2	Directly compare two objects with a measurable attribute in common, to see which object has "more of""less of" the attribute, and describe the difference. For example, directly compare the heights of two children and describe one child as taller/shorter.			
K.MD.3	Classify objects into given categories; count the numbers of objects in each category and sort the categories by count.			
	Compose and decompose numbers from 11 to 19 into ten ones and some further ones, e.g., by using objects or drawings, and record each composition or decomposition by a drawing or equation (such as 18 = 10 + 8); understand that these numbers are composed of ten ones and one, two, three, four, five, six, seven, eight, or nine ones.			
K.NBT.				

KASC Core Academic Standards Checklist
Elementary Mathmatics

User's Name:
Date:
Purpose:

Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.

First Grade

	Add and subtract within 20, demonstrating fluency for addition and subtraction within 10. Use strategies such as counting on; making ten (e.g., 8 + $=8+2+4=10$ $+4=14) ;$ decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1=9) ;$ using the relationship between addition and subtraction (e.g., knowing that 8 + $4=12$, one knows 12 - 8 = 4); and creating equivalent but easier or known sums (e.g., adding 6 + 7 by creating the known equivalent 6 + 6 + 1 = 12 + 1 = 13).		
1.OA.6			

1.MD. 2	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps.			
1.MD. 3	Tell and write time in hours and half-hours using analog and digital clocks.			
1.MD. 4	Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another			
1.NBT. 1	Count to 120 , starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.			
1.NBT. 2	Understand that the two digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:			
	a. 10 can be thought of as a bundle of ten ones - called a "ten."			
	b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones.			
	c. The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).			
1.NBT. 3	Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.			
1.NBT. 4	Add within 100, including adding a two-digit number and a one-digit number, and adding a two-digit number and a multiple of 10 , using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.			

Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.

Second Grade

2.NBT.8	Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900		
2.NBT.9	Explain why addition and subtraction strategies work, using place value and the properties of operations.		

Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.
Third Grade

	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.		
3.OA.2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 $\div 8$.		
3.OA.3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.		
3.OA.4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=-\div 3,6 \times 6=$ $?$		

	b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.			
	c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and a \times c. Use area models to represent the distributive property in mathematical reasoning.			
	d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non- overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems			
	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side length, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.			
3.MD.				

	d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>,=$, or <, and justify the conclusions, e.g., by using a visual fraction model.		

Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.

Fourth Grade			
4.OA.1	Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.		
	Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.		
$4 . O A .2$	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding		
$4 . O A .3$			

4.NF. 1	Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions			
4.NF. 2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as 1/2. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>,=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.			
4.NF. 3	Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$.			
	a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole			
	b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8$; $3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+8 / 8+$ 1/8.			
	c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction			
	d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem			
4.NF. 4	Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.			

	a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.				
	b. Understand a multiple of a / b as a multiple of $1 / \mathrm{b}$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times$ a)/b.)				
	c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?				
4.NF. 5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and $100 .{ }^{2}$ For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.				
4.NF. 6	Use decimal notation for fractions with denominators 10 or 100 . For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.				
4.NF. 7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.				

4.MD. 1	Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as $48 \mathrm{in}$. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...		
4.MD. 2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.		
4.MD. 3	Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor		
4.MD. 4	Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection		
4.MD. 5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:		

	a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure angles.								
	b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.								
4.MD.6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure								
	Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.								
4.MD.							Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures		
:---	:---	:---	:---						
4.G.1	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles	Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. ldentify line-symmetric figures and draw lines of symmetry.							
4.G.2.									
4.G.3									

KASC Core Academic Standards
Elementary Mathmatics

User's Name:
Date:
Purpose:

Use the columns to track any curriculum issue you are considering. For instance, you might list the marking period when your class studied the topic, the dates when your child had homework on the topic, the reas where teachers want addictional professional development opportunities, or any issue you need to analyze as you work to enhance your students performance.

	a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100+4 \times 10+7 \times 1+3 \times$ $(1 / 10)+9 \times(1 / 100)+2 \times(1 / 1000)$.					
	b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and <symbols to record the results of comparisons.					
5.NBT.4	Use place value understanding to round decimals to any place					
5.NBT.5	Fluently multiply multi-digit whole numbers using the standard algorithm					
	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.					
	Add, subtract, multiply, and divide decimals to 5undredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.					5.NBT
:---						

	a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.		
	b. Apply the formulas $V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems.		
	c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems.		

